
Python - Crash Course

Learning the python essentials

Why Python over Java/C/C++/everything else?

● Third most popular language after Java / C
● Easy to learn and use
● Multitude of libraries
● Ships with most Linux distros
● Interpreted, not compiled
● Less lines of code (compared to Java/C++)
● Dynamic typing
● No semicolons or curly brackets (kind of)

● Slower than compiled languages
● Higher level = less control than e.g. C/C++
● Higher memory usage
● Not good for mobile development

Advantages Disadvantages

Real world examples of Python

● Instagram backend - “Instagram Server is entirely Python powered.” (Django Framework)

● Reddit - “Reddit was originally written in Common Lisp but was rewritten in Python in December 2005”

● Eve Online (MMORPG) - “Both the server and the client software for Eve Online are developed in Stackless

Python, a variant of the Python programming language.”

● Dropbox - “Dropbox has about four million lines of Python code and it's the most heavily used language for

its back-end services and desktop app” (Also where the creator of the language worked 2013-2019)

● SMHI - “Its Python-based remote sensing software for automatic product generation, using NOAA and

Meteosat data, provides information to bench forecasters, objective analysis schemes, and commercial

interests such as the media

● And MANY more!

QUICK rundown of python essentials

● Variables (data containers)
● Flow control is handled with:

○ If, elif and else conditionals
○ For, while loops

● Functions are blocks of code that can be executed at will and takes parameters (arguments) and usually
returns a result, for example the user input function input() our output function print()

● Import classes and functions from a library or another file, for example import random for random
number generation

● Comments start with # and are not executed
● Data types can be numbers, hashmaps, lists, text
● Classes are your way of making your own data types
● Operators (+, -, %, /, //, *, **) behave differently depending on which data type

○ “A” * 10 == “AAAAAAAAAA” (Strings)
○ 5 * 10 == 50 (Integers)
○ [1] * 10 == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] (Lists)

Variables - Containers for data

Assignment

number = 123

Variable name Data

a, b = 1,2

print(f"a={a}, b={b}") >> a=1, b=2

Assignment of multiple

Naming rules

2b_or_not_2b = "that is the question"

to_be_or_not_2b = "that is the question"

Cannot start

with a number

print = "hello"

print("will not work") (since print has been

overwritten with the str “hello”)

TypeError: 'str' object is not callable

Do not overwrite

python functions

a = 123

A = 1234
= ValidCase sensitive

Python essentials - most common data types

Text:
Strings (str)

x = "Hello"

type(x) == <class 'str'>

Numbers:
Integer (int) - whole numbers

x = 123

type(x) == <class 'int'>

Float (float) - decimal numbers

x = 123.5

type(x) == <class 'float'>

Sequences:
List (list) - mutable

x = [1,"a", 3.0]

type(x) = <class 'list'>

Tuple (tuple) - immutable
x = (1,2,3)

type(x) = <class 'tuple'>
Booleans:
Boolean (bool) - True/False

x = True

type(x) = <class 'bool'>

Text - Strings (character arrays)

Assigned with either double or single quotation marks

string_one = "This a string"

string_two = 'This is also a string'

Can be concatenated with operators

string_one = "Hello"

string_two = "Lexher!"

string_three = string_one + " " + string_two

print(string_three) >> Hello Lexher!

Can be spliced (starts from 0)

letters = "abcdefgh"

print(letters[4]) >> e

print(letters[0:3]) >> abc

Useful functions and methods

lexher = "LeXhEr"

print(lexher.lower()) >> lexher

print(lexher.upper()) >> LEXHER

print(len(lexher)) >> 6
Comparison

lexher = "lexher"

print(lexher == "lexher") >> True (equals)

print(lexher == "hello") >> False (equals)

print(lexher in "lexher is great!") >> True (contains)

print(lexher not in "lexher is great!") >> False (does not contain)

F-Strings

name = "Niklas Lund"

f_string = f"My name is {name}"

Numbers - Integers and floats

Assigned with just numbers or converted from another type
with the int/float-function and reassigned with operators

number_one = 1.0

number_two = int("2")

Math with operators
a = 2

b = 10

print(a + b) >> 12

print(a * b) >> 20

print(b / a) >> 5.0 (division returns float)

print(b // a) >> 5 (floor divisions returns int)

print(b % a) >> 0 (modulus)

print(b ** a) 100 (power of: 10 ^ 2)

CAUTION: Operations with floats

a = 0.1 + 0.1 + 0.1

b = 0.3

print(a == b) >> False

print(a) >> 0.30000000000000004

Comparison

a = 2

b = 10

print(b == a) >> False (equals)

print(a == 2) >> True (equals)

print(b != 2) >> True (Not equal)

print(b < a) >> False (Lower than)

print(b > a) >> True (Greater than)

Booleans - True / False

a = True

b = False

print(1 == 1) >> True

print(3 < 1) >> False

Assignment

All comparisons return a boolean

Integers

0 >> False

-100,100,9999 are all True

Strings

"" >> False

"sometext" >> True

Lists

[] >> False

[1,2,3] >> True

All datatypes have an inherent truth value

Flow - If, elif and else

Structure

suspected_age = look_at(person)

if suspected_age < 25:

 true_age = check_id()

 if true_age < 18:

 return False

 elif 18 < true_age < 40:

 return True

 else:

 print("Oh, you are older than you look!")

 return True

else:

 return True

Remember the colon and whitespace (indentation)

if name == "niklas":

print(True)

IndentationError: expected an indented block

Operators

== Equals (value)

!= Not Equals

< Less than

> Greater than

<= Less than or equal

is Equals (is the same object)

In Membership (if array contains X for example)

Flow - for and while loops

Structure

while True:

 print("this goes on forever")

i = 0

while i < 10:

 print("This goes on for 9 times")

 i += 1

for i in range(10):

 print(f"this goes on for 10 times")

letters = "abcde"

for letter in letters:

 print(letter) >> 1st loop print a, second b etc

Break and continue
while True:

 answer = input("type '123' ")

 if answer == "123":

 break

 else:

 continue

 print("I will never print")

print("We broke out of the loop!")

else
letters = "abcdefgh"

for letter in letters:

 if letter == "x":

 break

else:

 print("x not found")

Time to put it into action, a game!

Rules of the game:
The user has to guess a random number and the program will return if the guess is lower or
higher than the number until a correct guess is given and we output the number of attempts.

● From the random library import the function randint
● Generate a random number with the function randint and store it in a variable
● Create a variable that holds the number of guesses taken
● Make a while-loop that contains

○ Take user input with input() and store in a variable
○ Check if it is the correct number or if it is higher/lower
○ If correct; break
○ Else; output higher or lower and continue

● If broken out of the loop
○ Output number of guesses taken and exit

Structure:

Lists

Assignment

people = ["Niklas", "Daniel", "Umer"]

various = [1,1.0, "text", ["other", "lists"], True]

Indexing and splicing [start:stop:step]

letters = ["a", "b", "c", "d", "e", "f"]

print(letters[0]) >> a

print(letters[2]) >> c

print(letters[1:]) >> ["b", "c", "d", "e", "f"]

print(letters[:3]) >> ["a", "b", "c"]

print(letters[::2]) >> ["a", "c", "e"]

Indexes 0 1 2 3 4 5

Useful functions and methods

1: numbers = [1,2]

2: numbers.append(3)

3: numbers.pop(0)

4: numbers.insert(1,5)

5: numbers.sort()

6: numbers.extend([1,2,3])

7: numbers.clear()

Code: print(numbers)

1: [1,2]

2: [1,2,3]

3: [2,3]

4: [2,5,3]

5: [2,3,5]

6: [2,3,5,1,2,3]

7: []

CAUTION: Assignments of lists does not copy
a = [1,2,3]

b = a

a.append(4)

print(b) >> [1,2,3,4]

a = "123"

b = a

a += "4"

print(b) >> "123"

!=

Use b = a.copy() instead!

Flow - for loops and indexing

Lists

firstnames = ["Bill", "Elon", "Niklas", "Steve"]

lastnames = ["Gates", "Musk", "Lund", "Jobs"]

for i in range(len(firstnames)):

 print(f"i = {i}:")

 print(firstnames[i] + " " + lastnames[i])

Output:

i = 0:

Bill Gates

i = 1:

Elon Musk

i = 2:

Niklas Lund

i = 3:

Steve Jobs

Changing
numbers = [1,2,3]

for i in range(len(numbers)):

 numbers[i] *= 2

print(numbers) >> [2, 4, 6]

range(start, stop, step) function

for i in range(10,100):

 print(i) >> 10,11,12 ... 97,98,99

for i in range(1,100,2):

 print(i) >> 1,3,5 ... 95,97,99

for i in range(100,1,-1):

 print(i) >> 100,99,98 ... 4,3,2

Dictionaries - Key, value pairs

Assignment (can also be one-liner)

skills = {

 "Niklas" : ["linux", "python"],

 "Daniel" : ["linux", "kubernetes", "docker"]

}

Cannot contain duplicate keys

Accessing
print(skills["Niklas"]) >> ["linux", "python"]

for key, value in skills.items():

 print(f"Key = {key}")

 print(f"Value = {value}")

Output:

Key = "Niklas"

Value = ['linux', 'python']

Key = "Daniel"

Value = ['linux', 'kubernetes', 'docker']

Keys Values

user = {

 "firstname" : "Niklas",

 "lastname" : "Lund",

 "age" : 27,

 "mood" : "happy",

 "mood" : "angry"

}

print(user["mood"]) >> angry

Functions - Declaring and calling

Declaration

def hello():

 print("Hello!")

hello() >> "Hello!"

hello("Niklas") >> ERROR

def function_name(argument_one, argument_two,keyword_argument=True):

 global global_variable

 global_variable = 2

 local_variable = 3

 return global_variable + local_variable

Calling

def hello(name):

 print(f"Hello {name}!")

hello() >> ERROR

hello("Niklas") >> "Hello Niklas!"

def hello(name="User"):

 print(f"Hello {name}!")

hello() >> "Hello User!"

hello("Niklas") >> "Hello Niklas!"

No arguments One argument One argument with a default value

Functions - Returning and scope

Returning values

def returns_two():

 return 2

print(1 + returns_two()) >> 3

def both_names(name):

 firstname, lastname = name.split(" ")

 return firstname, lastname

print(both_names(“Niklas Lund")) >> "Niklas”, “Lund"

Scope

x = 5

def set_x(number):

 x = number

set_x(50)

print(x) >> 5

x = 5

def set_x(number):

 global x

 x = number

set_x(50)

print(x) >> 50

Classes

UsingDeclaration

class Person():

 def __init__(self, name, skills):

 self.name = name.capitalize()

 self.skills = skills

 def describe(self):

 print(f"Hi, my name is {self.name}")

 print("My skills are:")

 for skill in self.skills:

 print(f"\t{skill}")

 def learn(self, new_skill):

 print(f"{self.name} learned {new_skill}!")

 self.skills.append(new_skill)

Special Init method

Class
Methods

niklas = Person("Niklas", ["Linux", "Python"])

daniel = Person("Daniel", ["Linux", "Kubernetes", "Docker"])

daniel.describe()

niklas.learn("Openshift")

niklas.describe()

Hi, my name is Daniel
My skills are:
 Linux
 Kubernetes
 Docker
Niklas learned Openshift!
Hi, my name is Niklas
My skills are:
 Linux
 Python
 Openshift

Output

Example, using classes to make a deck of cards

class Card():

 def __init__(self, value, suit):

 self.value = value

 self.suit = suit

 def __repr__(self):

 translate = {

 11 : "jack",

 12 : "queen",

 13 : "king",

 1 : "ace"

 }

 if self.value > 10 or self.value == 1:

 return f"{translate[self.value]} of {self.suit}"

 else:

 return f"{self.value} of {self.suit}"

class Deck():

 def __init__(self):

 suits = ["hearts", "clubs", "spades", "diamonds"]

 values = [1,2,3,4,5,6,7,8,9,10,11,12,13]

 #Initiating a full deck

 self.cards = []

 for value in values:

 for suit in suits:

 self.cards.append(Card(value,suit))

 def get_random_card(self):

 first_card = self.cards.pop(0)

 self.cards.append(first_card)

 return first_card

 def shuffle(self):

 random.shuffle(self.cards)

Popular Libraries

Web Development

● FastApi
● Flask
● Django

Data analyzing

● NumPy
● Pandas

From the Standard Library

● requests - Send HTTP requests
● math - Math based operations
● random - Random number generation and other
● itertools - Iterator functions and helper
● threading - Multithreading processes
● os - Operating system interface
● sys - Access to interpreter
● datetime - Dates and time
● time - Timing functions and sleep

Thank you!

